
An Arduino Based R/C KAP Controller

Introduction
Taking inspiration from repackaged R/C transmitters by Cris Benton and David Mitchell, I decided last

summer to build an R/C system for my own KAP rig. Like Cris and David, I started with an off-the-shelf

R/C transmitter and receiver. The Hobby King T6A was my system of choice. The receiver was used as-

is, but the transmitter I modified beyond recognition. This paper describes the new transmitter module

and how it works.

The description here doesn’t provide step by step instructions. But it is intended as a guide for any

technically-minded individual who wants to develop a similar system.

This design, as mentioned above, is based on an available R/C system. But only the 2.4 GHz RF module

(and antenna) from the original transmitter is retained. An Arduino processor feeds the RF module with

a PPM signal, telling it where to position each of the servos. The operator controls the system through a

user interface consisting of a thumb joystick and an LCD. The Arduino interfaces with these

components, translates the operator’s intentions into servo settings, and transmits them to the rig

through the RF module.

The rest of this document is organized into four topics: requirements, functionality, system components

and theory of operation. The requirements section briefly introduces what the system is intended to do.

Then the functionality section gives an operators view of the transmitter, describing how it is used to

perform KAP operations. The system components section describes the construction of this transmitter.

And, finally, a set of appendices discuss some key technical aspects of this project.

Discussion
A discussion topic on this R/C system was created on Cris Benton’s KAP Forum. If you have any

questions about this system, or are interested in further information, that would be the place to go.

http://arch.ced.berkeley.edu/kap/discuss/index.php?p=/discussion/5325

Online Repository
This document, along with the source for the Arduino, is available via Git:

https://github.com/howtokap/kap-tx1

git clone https://github.com/howtokap/kap-tx1.git

Requirements
Over the years, I’ve made numerous attempts to develop different R/C KAP systems. So I have a lot of

ideas of what such a system could do. Rather than design a do-everything system, though, I decided to

minimize the functionality of this system. This, I hoped, would improve my odds of success this time.

These were the basic functional requirements for this system:

 Set pan (full 360 degree range),

 Set tilt (+135 to -45 degrees from vertical)

 Trigger the shutter.

 Indicators should show the current pan/tilt orientation.

 Operable with one hand. (Preferable while wearing a glove.)

 Small enough to carry on a neck strap (so I could drop it when necessary.)

If I could get that much working, I’d have a usable system. Additional functionality could be added later.

http://arch.ced.berkeley.edu/kap/discuss/index.php?p=/discussion/5325
https://github.com/howtokap/kap-tx1
https://github.com/howtokap/kap-tx1.git

Functionality
Here’s how the system works from an operator’s perspective.

Manual Pan Control
The pan angle is adjusted by moving the thumb joystick left or right. “Bumping” the knob left or right

momentarily adjusts the pan angle by one step of 15 degrees. If the joystick is held to the left or right,

the pan angle will make repeated steps.

Manual Tilt Control
The tilt angle is adjusted by moving the thumb joystick up or down. As with pan, bumps adjust the angle

in single steps, holding the control results in repeated steps. Tilt adjustments are made in 15 degree

increments.

Motion Smoothing
The Arduino module translates the operator’s pan and tilt selections into servo positions. The software

is calibrated so that the actual rig orientation matches the pan and tilt shown on the display. With this

feature, the operator can read the rig’s orientation from the display even if the rig itself can’t be seen

clearly.

When the Arduino changes the pan and tilt settings, it uses a constant acceleration to start and stop the

servo motion. This prevents jerky movements that could induce unwanted swinging or vibration in the

rig.

The Arduino also manages the rotation range of the pan servo. As the operator adjusts the pan angle

continuously in one direction, the processor recognizes when the pan servo is saturated and it needs to

“rewind” to reach the indicated heading.

Manual Shutter Control
The camera shutter is controlled via a servo signal using a GentLED infrared trigger. Whenever the

operator presses the joystick button, a shutter press is triggered. This shutter press may be delayed,

however, if the rig is in motion. The Arduino waits until any prior motion is completed and a brief

stabilization period has passed before it triggers the camera.

Future: Shooting Sequences
It should be straightforward to implement alternative shooting modes with the Arduino software. What

has been described above would be single-shot mode. A cluster shooting mode would add the

capability to shoot multiple exposures with one button press. For example, the system could take the

first shot with the operator’s intended pan and tilt, then take 8 more shots varying the pan and tilt

angles slightly for these additional exposures. This would essentially automate the process of

“compositional bracketing” as Cris Benton calls it.

Other sequential shooting modes could be used to produce horizontal or vertical panoramic images.

Future: AutoKAP Modes
Beyond sequential shooting modes, this control system could implement a full AutoKAP program. When

put in AutoKAP mode, it would start shooting automatically using pre-programmed pan and tilt

coordinates without operator intervention.

When the operator wants to return to intentional shooting, he or she could switch the system back to

single-shot mode.

System Components
The transmitter system is designed with an Arduino processor at the. It has a thumb joystick to provide

user input and an LCD module for output. The Arduino interfaces with the transmitter module from the

HK-T6A to achieve its radio function. Finally, an on/off switch, voltage regulator and a set of AAA

batteries provide the power. Most of the components, as well as the case, were ordered from Sparkfun

A more detailed Bill of Materials is included here:

Component Source Part Number

Arduino Pro Micro –
5V/16MHz

Sparkfun.com https://www.sparkfun.com/products/12640
DEV-12640

RF module Hobby King T6A N/A

Antenna Hobby King T6A N/A

Thumb Joystick and
Breakout Board

Sparkfun.com https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9110

SHARP LCD Module and
Breakout board

adafuit http://www.adafruit.com/product/1393

Adjustable Voltage
Regulator

Pololu https://www.pololu.com/product/2118

Bluetooth module Sparkfun.com https://www.sparkfun.com/products/12576

Power switch and cover Sparkfun.com https://www.sparkfun.com/products/9276
https://www.sparkfun.com/products/9278

Prototype Board Sparkfun.com https://www.sparkfun.com/products/8619

Case Sparkfun.com https://www.sparkfun.com/products/8632

Block Diagram
As this diagram shows, the Arduino processor is at the center of the system architecture. It works with

the user interface components, the joystick and LCD, and sends servo positions to the 2.4GHz RF

module. The bluetooth component is shown but this is not used, currently.

https://www.sparkfun.com/products/12640
https://www.sparkfun.com/products/9032
http://www.adafruit.com/product/1393
https://www.sparkfun.com/products/9276

Arduino Pro Micro 5V/16MHz
The Arduino Pro Micro from Sparkfun is based on the ATmega32U4. It is quite small, making it more

attractive than the standard arduino for this project. The dedicated timers of this processor support

generating the key PPM signal. And the other pins and functions proved to be a perfect match for this

project.

RF Module and Antenna
These were components taken from the Hobby King T6A transmitter.

WARNING: When disassembling the Hobby King transmitter, be very careful not to cut or damage the

wire connecting the RF module to the antenna! This “wire” is actually a tiny coaxial cable and would be

difficult to repair if cut. To free the antenna from the case, I had to cut the case with a dremel tool.

Arduino

Joystick

LCD

2.4GHz RF

Bluetooth

PPM

The connections on the RF module are:

 Ground

 VCC (>4 volts)

 no connection

 Bind (white)

 no connection

 no connection

 PPM (yellow)

The connections between the Arduino and RF module are as shown here:

The RF module contains its own 3.3V LDO voltage regulator so the VCC input voltage can be any voltage

above about 4 volts. I connected the battery (nominally 4.5 V) directly to the transmitter rather than

feeding it from one of the other voltage regulators in my system.

The “bind” input should be connected through a momentary switch to ground. But in the current

implementation, it is not connected. The binding function is activated by shorting that terminal while

power is applied. (I was hoping to activating binding with a digital signal from the Arduino but didn’t

succeed. The Tx module only seems to look for the bind signal immediately after power-up.)

The PPM (Pulse Position Modulation) input is the key to the whole project. This signal describes where

the six servos should be positioned. The RF module transmits this information to the receiver where it is

translated into the PWM servo signals. The detailed specifications of the PPM signal are as follows:

 Format: normally high with low pulses.

 Pulse duration: 400uS

 Frame frequency: 50Hz (20mS)

 Channels: 6 (denoted by 7 PPM pulses)

 Nominal inter-pulse interval: 1-2ms

 Min/Max pulse interval: 0.7ms – 2.3 ms.

More information on this signal and how it is generated can be found below under Theory of Operation.

Thumb Joystick
The thumb joystick provides potentiomers for X and Y input. These are read with two of the available

A/D channels on the Arduino.

The joystick also features a momentary switch when the stick is pressed down. This is used for the

shutter function.

The following diagram shows the connection of the joystick to the Arduino:

[Update: Joystick SEL now connects to Arduino D9]

Having pan, tilt and shutter all on the joystick enables operating all the primary functions with one

finger, which is ideal. The large-ish knob also seems quite usable with gloves on. I’m hoping field testing

proves this out.

LCD Module
The LCD display provides visual feedback on the pan and tilt settings. It also shows the shooting mode,

shutter state, horizontal/vertical indicator and an auto/manual indicator.

The Adafruit SHARP Memory Display Breakout (http://www.adafruit.com/product/1393) was used as it

provides a sunlight readable display.

http://www.adafruit.com/product/1393

The LCD module was programmed using the Adafruit GFX library.

Power Switch
The main power switch resides on the top of the case and is protected by a missile switch cover. The

switch cover may add some degree of ruggedness and prevent the unit from turning on accidentally in

my equipment bag. But actually it’s just there to look cool.

Power Supply and Regulation
Power in the transmitter is provided by three AAA cells. These provide a nominal 4.5 volts that supplies

the RF module directly. They also feed a Pololu boost regulator that generates 6 volts for the Arduino.

The Arduino’s own regulator drops this down to 5V for the ATmega. And the 5V output of the Arduino is

used to power the LCDs, joystick and Bluetooth modules.

Bluetooth Module
Did I mention bluetooth? Yes, I stuck this in but haven’t used it yet. It could potentially be used to link

to a smartphone providing features like a calibration, GPS logging of a KAP session, etc.

VCC

GND

3v3

VIN

CLK

GND

DI

CS

EMD

DISP

EIN

D4

D5

D6

Arduino

SHARP

Memory

Display

[Correction: the diagram shows D17 where it should say D14. Also, the RTS and CTS pins were not wired

up as they are not necessary.]

Appendix A: PPM Signal Generation
The key to interfacing the Arduino with the HK-T6A transmitter module is the PPM Signal.

A PPM signal represents the six servo positions with a series of pulses. The time intervals between

pulses correspond to servo positions. The description below refers to this diagram:

For a system like ours with six servos, there will be seven pulses that repeat periodically. The time

between pulses gives the angles of the servos. The first servo position corresponds to the time from the

first pulse to the second. Similarly the second servo position is indicated by the time from the second

pulse to the third. The pulses themselves are always 400 microseconds long but that doesn’t matter.

It’s the time between pulses that determines the servo positions.

An interval of 1.5 milliseconds, for example, would put the servo in the middle of its range of motion. If

the time interval were shorter, the servo would position itself to the left, longer and it would go right.

Typically the time interval varies from 1.0 to 2.0 milliseconds but the Hobby King RF module can support

timing from 0.7 to 2.3 milliseconds, giving a little extra range to the servos we connect.

The position of the last servo, number six, is determined by the interval between pulses 6 and 7. After

that there should be no pulses for a longer time interval. (About 10ms. It varies). The whole process

repeats every 20 milliseconds, or 50 times per second. Each repetition is called a frame. The long idle

period between the last pulse of one frame and the first pulse of the next frame is how the receiver

knows which pulse is which.

In older R/C systems, the PPM signal was closely related to the modulated RF signal. But 2.4 GHz

systems, with their digital radios and spread spectrum schemes, don’t actually use the PPM format

anymore. Still, the transmitter module in the HK-T6A was apparently designed to replace one of those

older R/C transmitters since it accepts a PPM signal as its input. This is fortunate since it makes

interfacing with an Arduino quite easy.

The Arduino we’ve chosen has special hardware that can produce this PPM signal. To get right down to

it, the peripheral called Timer 1 is capable of producing the PPM signal on pin 10. It needs a bit of help

from the software, though. The PPM generation process works like this. We set up the timer with two

time periods: the pulse width (400uS) and the interval until the next pulse (based on the position we

want the servo to have.) The timer hardware sets the output pin low for the pulse width then high for

the rest of the interval. At this point, it signals the software it is done, so we load the hardware with

values for the second interval. The process repeats for intervals 3, 4, 5 and 6, then we program it for

one long interval that is the time until the next frame. The process repeats indefinitely. The software

simply has to start the timer running when the system powers on, then repeatedly set the pulse

intervals from an interrupt.

You can refer to the ATmega32U4 documentation on Timer 1 for every gory detail.

In terms of software, we need an interrupt service routine to update the timer for each interval and a bit

of code to initialize things and get the ball rolling.

Here’s the interrupt service routine I use:

 #define PPM_FRAME_LEN (64000) // 32mS -> 30Hz rate

 #define PPM_CHANNELS (6)

 struct Ppm_s {

 int phase; // which phase of PPM we are in, 0-6.

 int time[PPM_PHASES]; // width of each PPM phase (1 = 0.5uS)

 bool startCycle;

 } ppm;

 ISR(TIMER1_OVF_vect)

 {

 static unsigned remainder = PPM_FRAME_LEN;

 // Handle Timer 1 overflow: Start of PPM interval

 // Program total length of this phase in 0.5uS units.

 ppm.phase += 1;

 if (ppm.phase > PPM_CHANNELS) {

 ppm.phase = 0;

 ppm.startCycle = true;

 }

 // Remainder computation

 if (ppm.phase == 0) {

 // Store remainder

 ppm.time[ppm.phase] = remainder;

 remainder = PPM_FRAME_LEN;

 }

 else {

 remainder -= ppm.time[ppm.phase];

 }

 // Program next interval time.

 OCR1A = ppm.time[ppm.phase];

 }

And the code to initialize and start the timer:

 void ppmSetup()

 {

 pinMode(PPM_OUT, OUTPUT);

 pinMode(TX_PAIR, INPUT);

 // Init PPM phases

 int remainder = PPM_FRAME_LEN;

 for (ppm.phase = 1; ppm.phase <= PPM_CHANNELS; ppm.phase++) {

 ppm.time[ppm.phase] = PPM_CENTER; // 1.5mS

 remainder -= ppm.time[ppm.phase];

 }

 ppm.time[PPM_RESYNC_PHASE] = remainder;

 ppm.phase = 0;

 ppm.startCycle = true;

 // Disable Interrupts

 cli();

 // Init for PPM Generation

 // Fast PWM with OCR1A defining TOP

 TCCR1A = WGM_15_1A | COM1A_00 | COM1B_11 | COM1C_00;

 // Prescaler : system clock / 8.

 TCCR1B = WGM_15_1B | CS1_DIV8;

 // Not used

 TCCR1C = 0;

 // Length of current phase

 OCR1A = ppm.time[ppm.phase];

 // Width of pulses

 OCR1B = PPM_PULSE_WIDTH;

 // interrupt on overflow (end of phase)

 TIMSK1 = TIMSK1_TOIE;

 // Enable interrupts

 sei();

 }

Again, that’s more technical information than I can explain here but if you cross reference this code with

the Atmel documentation, you should be able to produce a PPM signal with your own system.

(Specifically, see Chapter 14. 16-bit Timers/Counters, of the ATmega32U4 datasheet.)

With the timer running and this ISR in place, the rest of the system simply has to write values to

ppm.time[N] to set each servo’s position. Servo positions are represented by the pulse timing,

measured in half-microsecond ticks. So a servo in the center position (1500uS interval) would be

represented by the number 3000. Values should stay in the range 1400 to 4600 or the RF transmitter

and receiver will malfunction. ppm.time[0] is the time interval between frames and shouldn’t be

modified by the main software. Servo 1 is controlled by ppm.time[1], etc.

Each time the PPM frame completes, the interrupt sets the ppm.startCycle flag. The loop() function of

the Arduino code looks for this and uses it to time all the polling processes that should run at about 50

Hz.

Appendix B: Arduino Pin Assignments
The following table summarizes which pins of the Arduino are used for which functions:

Arduino ATmega 32U4 Function Notes

GND Ground

RAW 6V From Pololu voltage
booster. Would have been
nice to use 4 AAA cells
instead of 3 and eliminate
this regulator but they
wouldn’t fit in the case!

VCC 5V Output to peripherals:
Bluetooth, joystick, LCD

RST Reset Not connected

RXI (D0) 20 (Rx) Bluetooth Rx Not implemented yet.

TXO (D1) 21 (Tx) Bluetooth Tx Not implemented yet.

D2 19 (SDA) Future I2C

D3 18 (SCL) Future I2C SCL

D4 25 (PD4) LCD CLK

D5 31 (PC6) LCD DI

D6 27 (PD7) LCD CS

D7 1 (PE6) Future Bluetooth RTS

D8 28 (PB4) Joystick button Polled but this pin supports
interrupts if that becomes
desirable.

D9 29 (PB5) Future Bluetooth CTS

D10 30 (PB6) PPM Signal Pin 10 must be used as it is
associated with Timer1.

D14 11 (MISO) Future SPI Bus, MISO

D15 9 (SCK) Future SPI Bus, SCK

D16 10 (MOSI) Future SPI Bus, MOSI

A0 36 (ADC7) Joystick X

A1 37 (ADC6) Joystick Y

A2 38 (ADC5) Future

A3 39 (ADC4) Future

In selecting these pins, I tried to keep some useful functions available even though not used in this

design. The Arduino I2C bus pins are open as are the main SPI pins and 4 general purpose I/O lines (two

of which support analog input). These create the potential to extend the design in a number of

interesting ways.

Appendix C: Assembly and Packaging
Here are a few photos showing how the hand-soldered board fits together and mounts in the case:

References
This project was inspired and informed by several other sources. The interested reader may want to

refer to these in their own KAP explorations.

Cris Benton’s repackaged R/C
http://arch.ced.berkeley.edu/kap/wind/?p=35

David Mitchell’s repackaged R/C controllers
https://www.flickr.com/photos/dave_mitchell/10514492995

https://www.flickr.com/photos/dave_mitchell/3551746790

Scott Haefner’s repackaged R/C
http://scotthaefner.com/kap/equipment/controller

PPM Signal Reference
http://sourceforge.net/p/arduinorclib/wiki/PPM%20Signal/

ATmega32U4 Documentation
http://www.atmel.com/devices/atmega32u4.aspx?tab=documents

Adafruit GFX Library
https://learn.adafruit.com/downloads/pdf/adafruit-gfx-graphics-library.pdf

Adafruit SHARP Memory Display instructions
https://learn.adafruit.com/adafruit-sharp-memory-display-breakout/programming

https://www.flickr.com/photos/dave_mitchell/10514492995
http://www.atmel.com/devices/atmega32u4.aspx?tab=documents
https://learn.adafruit.com/downloads/pdf/adafruit-gfx-graphics-library.pdf
https://learn.adafruit.com/adafruit-sharp-memory-display-breakout/programming

